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A B S T R A C T

The challenge of accurately forecasting ultra-short-term solar irradiance for photovoltaic systems is complicated 
by rapidly changing weather, and while ground-based sky images offer potential improvements, effectively 
extracting spatiotemporal data from these images remains a significant hurdle for current computer vision 
models. A new hybrid model, "An Attention Fused Sequence-to-Sequence Convolutional Neural Network," is 
being developed to address this challenge. The model predicts intra-hour GHI, DNI, and DHI with a 10-min lead 
time by combining a Convolutional Neural Network (for spatial feature extraction from sky images), an attention 
mechanism (to focus on relevant regions), and a sequence-to-sequence model (for temporal feature extraction 
from time-series data). The proposed Model is trained using the NREL Solar Radiation Research Laboratory 
Dataset while evaluating the model with the Mean Bias Error, Mean Absolute Error, Root Mean Squared Error, R 
Squared, and forecasting skill score. The 10-min and sequence length 2 interval is considered to be the best 
performing across most of the evaluation metrics with an MBE value is 2.321 W/m2, MAE value of 39.490 W/m2, 
RMSE value of 62.086 W/m2, R2 value is 0.909 W/m2, FSS value of 23.589 W/m2 and an MBE of 4.876 W/m2, 
MAE of 56.887 W/m2, RMSE of 85.346 W/m2, R2 of 0.834 and FSS of 24.881 W/m2 respectively. Furthermore, 
the sensitivity analysis reveals that the proposed model’s performance is influenced by both the sequence length 
and the lead time. The proposed framework outperforms other techniques for ultra-short-term PV generation 
forecasting, demonstrating its potential for practical deployment in PV systems to improve grid reliability and 
energy management.
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1. Introduction

1.1. Background

The fast development of solar energy, wind power, and other clean 
energy sources has grown into a crucial tactic in addressing the changing 
conditions as the world’s energy and climate concerns grow. Solar en-
ergy is perhaps the most viable renewable resource among them because 
of its availability, cost, mobility, cleanliness, and positive effects on the 
natural world [1,2]. However, the main issues with integrating solar 
electricity are that it is sporadic and unpredictable [3], and production 
changes seriously impede power networks’ ability to operate steadily 
and economically [4]. Incorporating solar photovoltaic (PV) plants into 
power networks has necessitated reliable PV generation forecasts over a 
short time horizon for network planning and staffing purposes. 
Furthermore, acquiring global horizontal irradiance (GHI) with excel-
lent spatial and time precision can greatly improve the reliability of PV 
power forecasts [5,6]. Therefore, the modelling of PV electricity is 
essential for forecasting short-term PV variations. PV generation is 
heavily reliant on the sun’s rays, and while it can be somewhat accurate 
on bright days, it may not attain optimum accuracy on gloomy, wet, or 
cloudy days due to variations and inconsistencies.

Over the last two generations, numerous PV generation predictions 
have been developed [7,8], but predicting remains difficult due to var-
iables such as sunlight, wind, and cloud covering [9,10]. PV generation 
forecasting methods are broadly classified into two types: utilising past 
PV output data and image-based analysis and forecasting. Numerical 
Weather Prediction (NWP) can help predict PV generation across in-
termediate and long horizons [11], but it does not work for 
ultra-short-term forecasting due to local atmospheric variables at the PV 
facility [12,13]. The PV generation time series displays seasonal and 
cyclical oscillations [14]. PV generation estimates have been con-
structed using a variety of statistical and machine learning approaches, 
including outlier identification [15], Extreme Learning Machine (ELM) 
[16], and day-ahead solar irradiance forecasting [17]. Nevertheless, 
these solutions need high-precision real-time meteorological data and 
computing complexity. Deep learning (DL) approaches [18,19], 
including multi-layer feed-forward artificial neural networks, Long 
Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Con-
volutional Neural Network (CNN)-LSTM, have been used to forecast PV 
generation. Nonetheless, these approaches may fail to correctly capture 
variations that are unpredictable in the ultra-short term. Numeric 
data-driven approaches necessitate more data and computationally 
complex processes. Sky-imagers, which employ ground-based sensors to 
gather regional sky images and mirror actual time atmospheric condi-
tions above the PV plant, can enhance forecast accuracy on an 
ultra-short time scale. Cloud images have been successfully used to 
improve PV generation forecast accuracy. Satellite and sky images are 
employed in image-based analysis and forecasting because they both 
contain local weather data as well as underlying spatiotemporal corre-
lations that may be used to predict future local environmental condi-
tions. As a result, a powerful deep learning model is required to grasp 
and expose the information encoded in sky images, as well as to combine 
these details with historical PV generation data to provide reliable 
ultra-short-term PV generation predictions [20].

1.2. Related works

Empirical approaches and DL approaches are the two main cate-
gories into which image-derived solar irradiance forecasts may be 
broadly divided [21]. Key informative carriers, such as cloud cover 
indices (CCI), cloud cluster matching (CCM), and cloud movement 
vectors (CMV), are extracted using empirical approaches from 
ground-based sky images [22]. A 20-min forecasting algorithm for 

clear-sky score prediction was developed by Victor et al. [23]. It per-
forms similarly to conventional models and has a forecast skill of 5–20 % 
for the majority of sky situations, but it has trouble with variations in 
irradiance and cloudy days. To lessen hardware functional management, 
Guillermo and Manel [24] devised a data processing technique for 
removing cloud dynamic elements from sky images and observations of 
solar irradiance. They then integrated this technique into solar fore-
casting methods. Zhang et al. [25] precisely measure and monitor var-
iations in solar irradiance using photographs of the sky taken from the 
ground. It creates a superior joint point-interval real-time estimating 
model that yields prediction intervals and predictable forecasting out-
comes. Regardless of the weather, the model generates tight intervals 
while retaining excellent quality and durability. However, because of 
their poor versatility, these approaches are not sturdy enough to with-
stand abrupt changes in the weather [26]. On the other hand, compet-
itive outcomes can be obtained with DL techniques, which do not 
require intricate pre-processing, due to their robust feature extraction 
and quadratic extrapolation ability [27]. This adaptability presents 
several chances to improve predicting accuracy. Federated learning, for 
example, allows the grouping of a global model without exchanging raw 
data, preserving forecasting accuracy while safeguarding data privacy 
[28]. Significantly enhancing model efficiency can be achieved by 
transfer learning, which is the transfer of conceptual information from a 
particular field to a different one, especially when training data is scarce 
[29]. Models can integrate new data while remembering what they have 
already learnt thanks to incremental learning [30]. Big data learning 
also makes use of huge datasets for training purposes to improve the 
generalisation of DL models [31]. Even with these developments, there 
is still work to be done in the field of efficiently combining multi-source 
data (such as sky photos and historical time series).

CNNs are a popular architecture for feature extraction from image 
information and are the foundation of image-based solar forecasting 
because of their common weights and local perceptive mechanisms 
[32]. Cong et al. [33,34] developed a SolarNet deep CNN model to 
forecast GHI from 10 to 60 min in advance without using numerical data 
or feature engineering. Quentin et al. analyzed four popular DL archi-
tectures for solar irradiance prediction based on a set of spherical sky 
images and external factors [35]. Hao et al. [36] identified a 3D-CNN 
that can extract characteristics from sky images using successful 
training procedures. Fei et al. [37] put forward a real-time approach for 
estimating solar irradiance up to the minute by extracting RGB values 
and pixel positions from sky images. Zhao et al. [38] developed a hybrid 
mapping technique based on deep learning for predicting 
ultra-short-term solar PV output. in his methods, the k-means clustering 
analysis using feature extraction from the convolutional autoencoder 
was carried out first followed by capturing the connections between the 
surface irradiance and the sky image by the hybrid model. Zhao Zhen 
[39] proposes a novel convolutional auto-encoder for extracting cloud 
distribution features (CDFs). In this work, a feature fusion by time step 
LSTM-FUSION irradiance prediction model is developed, accounting for 
the one-to-one relationship between CDFs and GHI. An approach for 
minutely irradiance prediction utilising multivariate extraction of fea-
tures of all-sky images is proposed by Wu et al. [40]. The optical flow 
method is used to generate the cloud displacement vector after 
pre-processing the initial images into four weather kinds. For irradiance 
projection models, convolutional neural networks extract multivariate 
data and blend them with historical irradiance and weather conditions. 
A technique for estimating sun irradiance using multivariate extracted 
features from all-sky images is presented by Wu et al. [41]. Utilising an 
enhanced clustering-boundary rectification technique, the technique 
distinguishes between cloud and sky pixels, divides all-sky images into 
four categories based on cloud-sky types, and uses an image RGB grid 
and convolutional neural network to extract global as well as local 
characteristics. It then builds irradiance projection models for four 
cloud-sky types by combining these features with historical irradiance 
and meteorological variables. In comparison to benchmarks, the 
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strategy reduces mean absolute percentage error by 0.21 %, 20.21 %, 
2.53 %, and 5.30 %.

Yet, the lack of spatial or temporal characteristic extraction limits the 
approaches’ capacity to attain a high degree of accuracy. Two CNN- 
based frameworks were built for processing sky imagery [34], with 
the first model performing 2D convolution on layered sky images and 
the 3D CNN doing direct 3D convolution on the sky image sequence. The 
results indicated that convolutional operations failed to perform well 
across channels, and the 2D convolutional design outperformed the 3D 
design. In Ref. [42], both spatial and temporal characteristics of sky 
images were evaluated, with PhyDNet and ConvLSTM running in par-
allel. However, the image-generating approach involves over-detailed 
features that are concealed in the inner layer, which may have an 
impact on the accuracy of the model. This study’s work is more in line 
with the model proposed by Jonathan et al. [43]. They proposed an 
Attention-embedded Convolutional Neural Network to anticipate GHI, 
DNI, and DHI for intra-hour solar forecasting using sequences of sky 
images. Six lead times and four sequence lengths were employed, and 
the optimal combination was found to be four sequences and 20 min. 
With low RMSE (62.75 W/m2), low MBE (2.71 W/m2), and a high FSS 26 
(38.81), this combination yields an appropriate balance and optimal 
result that demonstrates good accuracy, little bias, and a high skill score. 
A hybrid multipurpose ensemble learning model is proposed by Wang 
et al. [44] to anticipate solar irradiance in the short-term using sky 
images and past data. The model extracts temporal features and provides 
cloud cover statistics by using XGBoost to gather logical connections 
between input features and subsequent observations. A novel technique 
for stochastic end-to-end forecasting with an ImageNet pre-trained deep 
neural network is presented by Chaaraoui et al. [45]. The two-phase 
method entails modifying and updating an elementary model for fore-
casting after it has been trained to determine irradiance from all-sky 
imager images. When used for predicting, the model accounts for 
diffuse horizontal, global horizontal, and direct normal irradiance and 
gets a general positive skill score of 18.6 % in contrast to an intelligent 
consistency forecast. To achieve real-time precision in solar energy 
forecasting, Nijhum et al. [46] describe a unique technique for esti-
mating solar irradiance using infrared sky pictures and a CNN-regression 
model. Improved solar irradiance estimation is achieved by employing a 
lightweight, pre-trained MobileNetV2 model, which reduces the RMSE 
to 16.18 W/m2. Sebena et al. [47] investigate if sky images and mete-
orological information may be used to forecast how much electricity 
solar panels would produce. To reduce unpredictability and maximise 
control, it makes use of the SkyCam dataset and suggests three scenarios 
that combine block-based and sequential processing of sky photos and 
meteorological data using CNN and LSTM networks.

A transformer-based multimodal-learning system was created by Lie 
et al. [48] to predict global horizontal irradiance in the ultra-short 
period. The approach uses a generative decoder for multi-step predic-
tion, incorporates historical and experimentally calculated GHI, and 
converts ground-based sky images into optical circulation maps. Ac-
cording to the empirical findings, the proposed strategy accomplishes 
10-min-ahead forecasting with a normalised root mean square error 
(NRMSE) of 4.28 %. By employing a transformer-based structure, Zhang 
et al. [32] enhanced the accuracy of ramp occurrences, surpassing the 
gate architecture-based model and the conventional CNN model by 9.43 
% and 3.91 % on 2-min and 6-min scales, accordingly. According to 
Thomas et al. [49], irradiance can be precisely estimated using sky 
images and a machine learning model based on vision transformers 
without the need for further data. The model incorporates sky images 
from a conventional optical and fish-eye camera, as well as 17 years of 
GHI, DNI, and DHI from a high-accuracy pyranometer and sun-tracked 
device. For both DHI and GHI (RMSE = 31 W/m2), the proposed 
model produced extremely accurate results. A unique cloud image-based 
ultra-short-term prediction system is presented by Xu et al. [50]. 
Multi-layer perception is used for one-step PV generation forecasting, 
and the Vision Transformer model and Gated Recurrent Unit encoder are 

integrated for highly dimensional hidden analysis of features.

1.3. Knowledge gaps and scientific contributions

Even with the advancements in current research, several approaches 
still need to be looked at more. Recurrent neural networks (RNNs) are 
commonly used in conventional techniques for representing historical 
time-series data. RNNs are susceptible to feature deterioration via for-
ward propagation, though, because of their sequential design [51]. 
Furthermore, not every time step in the input data sequence is signifi-
cant when modelling lengthy sequences, which might cause uncertainty 
and inefficiencies if the entire time series is employed [52]. Therefore, it 
is imperative to apply techniques that can pinpoint and highlight the 
critical time stages that most accurately depict the sequential properties. 
CNN-based techniques for extracting spatiotemporal information from 
sky images have been the subject of more and more recent research. 
CNNs a type of deep neural network with convolutional layers process 
local data quickly and effectively via sliding windows, offering robust 
visual capabilities while preserving a low level of model structure. 
Nevertheless, CNNs are less successful in gathering global information 
[53], which makes it difficult to identify broad trends in sky images, 
especially when there is a lot of cloud motion. Consequently, a viable 
substitute is the creation of attention-based learning techniques for 
improving global feature acquisition. Furthermore, there is a dearth of 
studies on the cooperative learning of feature relationships over many 
methods. Differences in solar irradiance are tightly connected with 
changing factors (cloud cover, solar status, and cloud opacity) that are 
extracted from sky photographs. Still, not much research has been done 
on how historical data and sky image sequences interact. An important 
difficulty is that most contemporary image- and numerical-based fore-
casting models are responsive instead of proactive, as noted by Paletta 
et al. [35]. In particular, based only on sky images, these models 
frequently fall short of predicting when solar ramp events will occur. 
Therefore, to improve forecasting accuracy, more study is required to 
fully examine the connection between various feature modalities.

This study tackles these difficulties in a unified framework by 
investigating and constructing a temporal-specialized deep learning 
mechanism and an exceptionally well spatial feature extraction tech-
nique. The proposed model integrates the powerful properties of a CNN, 
a Sequence-to-Sequence model, and an attention mechanism. The CNN 
is for spatial feature extraction, an attention mechanism to focus on the 
relevant regions, and a sequence-to-sequence model to capture temporal 
dependencies for accurate solar irradiance forecasting and prediction 
using sky images. The proposed method is designed to predict the future 
values of global horizontal irradiance (GHI), direct normal irradiance 
(DNI), and diffuse horizontal irradiance (DHI) for utility operations. To 
accurately define the temporal structure of the predictions, forecast 
horizon (H), forecast resolution (R), forecast lead time (L), and forecast 
update rate (U) features were analyzed. The NREL Solar Radiation 
Research Laboratory Dataset including Mean Bias Error (MBE), Mean 
Absolute Error (MAE), Root Mean Squared Error (RMSE), Coefficient of 
Determination (R2), and forecasting skill score (FSS) evaluation metrics 
were used in this paper for analysis. To confirm the validity of the 
proposed model, the findings obtained are further compared with SOTA 
research. The following are this manuscript’s originality and main 
contribution. 

❖ A novel Attention Fused Sequence-to-Sequence Convolutional Neu-
ral Network which aims at enhancing the precision of solar irradi-
ance forecasts through the analysis of sky images is proposed.

❖ A spatiotemporal analysis forecasting framework is developed for 
capturing the dynamic changes over time in sequential sky images, 
enabling a more nuanced understanding of temporal patterns.

❖ A fusion of CNN and Attention mechanisms is designed to process 
spatial features effectively enabling the model to comprehensively 
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interpret the overarching patterns within the static spatial attributes 
of sky imagery.

❖ A hierarchical three-tier model structure is established to process 
both sky images and additional exogenous data in a cohesive end-to- 
end manner enhancing the stability and accuracy of clear-sky irra-
diance predictions, minimizing the risk of anomalies and bolstering 
the dependability of the forecasted clear-sky irradiance values.

The subsequent sections of this paper are structured in the following 
manner. Section 2 discusses in detail the materials and methodologies 
employed in this manuscript including the proposed model, dataset, and 
data preprocessing and evaluation metrics. Section 3, which is the re-
sults and analysis, the implementation hyperparameters, proposed 
model forecast results, components analysis of the proposed model and 
result comparison with the state-of-the-art models on the same dataset, 
result discussion and limitations, and future works were all discussed. 
The conclusion is done in section 4.

2. Materials and Methodology

This section talks about the materials and the proposed method used 
in this manuscript including the dataset, evaluation metrics, and 
implementation setup. The primary objective of this study is to accu-
rately forecast the GHI, DNI and DHI within an intra-hour timescale 
using a hybrid approach that combines image data from sky cameras and 
numerical weather data. The forecasting model leverages sequence im-
ages of the sky to capture cloud dynamics and uses numerical weather 
data as an additional input to improve the accuracy of solar irradiance 
predictions. Fig. 1 illustrates the overall workflow in this study. The 
dataset used consists of image data and numerical data. The image data 
are sky images captured at consistent intervals (e.g., every minute), used 

to extract cloud dynamics and patterns whereas the numerical data in-
corporates features like temperature, humidity, wind speed, and solar 
angles, essential for accurate irradiance predictions. These data types 
are synchronized to ensure that for every image, corresponding nu-
merical features are available. Data processing techniques such as 
resizing (all images are resized to a uniform dimension), normalization 
(pixel values are scaled between 0 and 1) and augmentation (techniques 
such as random rotations, flips, and zooms are applied to improve model 
robustness) were deployed for the image dataset while for the numerical 
data pre-processing, numerical features are standardized, ensuring all 
inputs have a similar scale and contribute equally during training. 
Furthermore, Time-based feature engineering is applied to extract 
temporal information like time of day and day of year. Image and nu-
merical data are synchronized by timestamp and labelled with corre-
sponding GHI, DNI, and DHI values for the proposed model training. The 
proposed model integrates convolutional layers, attention mechanisms, 
and an LSTM to capture spatiotemporal dependencies in the data.

2.1. Proposed model

The proposed Attention-Fused Sequence-to-Sequence Convolutional 
Neural Network is a hybrid model that processes image data through a 
series of convolutional layers, applies attention mechanisms, and in-
tegrates a sequence-to-sequence network for temporal pattern extrac-
tion. The proposed model then fuses the image-based features with 
numerical data for final predictions as seen in Fig. 2. The proposed 
model comprises several major blocks including the input layer, CNN 
block, attention block, sequence-to-sequence block, numerical data 
integration and output layer. The first block which is the input layer 
accepts an image input tensor of shape (H, W, C). Several convolutional 
layers with ReLU activation are seen in the CNN block to capture spatial 

Fig. 1. Technical Diagram of the Work done in this study.
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features from the input block. Feature extraction starts with lower-level 
patterns (e.g., edges) and progresses to more complex representations (e. 
g., cloud formations). Layers are followed by MaxPooling2D operations 
to reduce dimensionality while preserving relevant features. Specif-
ically, the CNN block comprises convolutional layers with filters ranging 
from 32, 64, 128, 256 and 512, kernel size of 3, and ReLU activation. 
Max pooling follows each convolutional block with the Batch normali-
zation layer at the 3rd and 5th convolution while a drop-out layer is 
added at the 4th and after the dense and Sequence to sequence layer. 
Max-pooling helps in increasing the model’s receptive field and 
computational efficiency by reducing the number of parameters. The 
CNN blocks are responsible for extracting hierarchical features from the 
input sky images specifically spatial patterns and structures such as 
cloud formations, sky colour, and other relevant features. These learned 
features help the model understand the complex relationships between 
sky conditions and solar irradiance levels.

Mathematically, let’s denote the output of the convolutional layer at 
each stage as xi where i denotes the stage number. This study denotes the 
convolution operation Conv2D(XI) with a kernel ki can be represented 
as: 

xi =ReLU(xI*ki + bi) (1) 

where * is the convolution operation and bi is the bias term. Each con-
volutional layer is followed by a Maxpooling operation which reduces 
the spatial dimensions of the feature maps which is denoted as x́i. 

xʹ
i =MaxPool(xi) (2) 

The third block is the attention block which is incorporated to weigh 
important regions of the feature maps generated by the CNN blocks. The 
attention mechanism uses global average pooling and a dense layer to 
create a feature vector that reweighs the original convolutional output, 
enhancing the model’s focus on critical regions. By assigning higher 
weights to these regions, the attention mechanism enables the model to 
focus on the most informative parts of the sky images, improving the 
accuracy of irradiance predictions. Let xj be the output of the convolu-
tional layer just before the attention block. The attention block is rep-
resented as: 

A=GlobalAvgPool
(
xj
)

(3) 

W1 =ReLU(W1 • A+ b1) (4) 

W2 =ReLU(W2 • W1 + b2) (5) 

M=Reshape(W2) (6) 

xʹ
i =Multiply

(
xj,M

)
(7) 

The output from the attention block is reshaped into a sequence and 
passed to a sequence-to-sequence model block. The sequence-to- 
sequence model captures temporal dependencies in cloud movement 
across image sequences. By leveraging the sequential nature of sky 
image data, the sequence-to-sequence layer enhances the model’s ability 
to make accurate predictions by considering how irradiance levels 
evolve. Assuming the output of the attention map is denoted as xatt, the 
sequence-to-sequence layer is calculated thus; 

xseq2seq = Seq2Seq(xatt) (8) 

The extracted image features are combined with processed numeri-
cal data (e.g., temperature, and wind speed) in the fully connected 
layers. Finally, the output of the proposed model is the prediction layer 
which is denoted as; 

y= Linear
(

xʹ
Seq2Seq

)
(9) 

The final output layer consists of three neurons with a linear acti-
vation function, predicting GHI, DNI, and DHI. In general, the proposed 
model is computed as 

y=OutputLayer
(
Seq2Seq

(
AttBlock

(
ConvLayers(x)

)))
(10) 

2.1.1. Spatial features extraction block (Block Two)
Assuming x(0) represents the input tensor, x(i) is the output tensor 

after the i − th layer, the proposed feature extraction block (Fig. 3) ac-
cepts input features as thus; 

x(0) = input
(

shape= inputshape

)
(11) 

where the input shape is denoted 224× 224× 3*nos of image. The 
layers are represented as x(1,2,3……. n) where n stands for the number of 
layers. Layer x(1,2,4,5,8,and 10) share the same configurations including 
ReLU, Con2D, Input features, biases, and padding as seen in Equation 
(12). 

Fig. 2. Proposed Model architecture.
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x(n) =ReLU
(

Conv2D
(

x(0),W(i)
conv, b

(i)
conv,padding=ʹsameʹ

)
(12) 

Where x(n) is the number of convolutions, W(i)
conv are the weights and 

b(i)
conv is the biases of the i-th convolutional layer, ReLU( • ) signifies the 

Rectified Linear Unit activation function. Layer x(7 and 11) share the same 
configurations with other convolutional layers with the inclusion of 
kernel regularizer = L2(0.05). Layer x(3,6,9 and 12) Share the same con-
figurations including MaxPooling2D, input features, and pool size as 
seen in Equation (13). 

x(n) =MaxPooling2D
(
x(0),pool size=(2, 2) (13) 

where MaxPooling2D( ⋅) represents the max-pooling operation with a 
pool size of (2, 2).

2.1.2. Relevant regions focus block
Fig. 4 shows the proposed attention mechanism. The first operation 

is applying a global average pooling 2D to the input tensor as seen in 
Equation (14). 

xavg =GlobalAveragePooling2D(input tensor) (14) 

This operation calculates the average value along each channel of the 
input tensor, resulting in a global representation of the input features. 
xavg is passed into the next layer as seen below. 

xdense1 =ReLU
(
Dense

(
xavg,Wdense1 ,bdense1

))
(15) 

xdense2 =ReLU(Dense(xdense1 ,Wdense2 , bdense2 )) (16) 

Where Wdensen and bdensen represents the weights and biases and ReLU 
activation functions are applied after each dense layer. The reshaping 
operation is carried out on the xdense2 thus: 

xreshape =Reshape(xdense2 ) (17) 

The reshape operation reshapes the output of the second dense layer 
into a 1 × 1 × in channels tensor for an element-wise multiplication 
with the original input tensor. 

xattention =Multiply
(
input tensor, xreshape

)
(18) 

This operation performs element-wise multiplication between the 
original input tensor and the reshaped tensor from the dense layers. 
Each element of the input tensor is multiplied by the corresponding 
element of the reshaped tensor, applying attention weights obtained 
from the dense layers. The output of xattention represents the input tensor 
modulated by attention weights. This mechanism allows the model to 
focus on important regions of the input features while suppressing less 
relevant areas.

2.1.3. Sequence to sequence model
The Sequence-to-sequence model (Fig. 5) contains several gates to 

control the flow of information including the input gate (it), forget gate 
(
ft
)
, output gate (ot) and cell state (ct). The input gate (it), forget gate 

(
ft
)
, cell state update 

(
gt
)
, new cell state (ct), output gate ot and hidden 

state (ht) which are represented mathematically as: 

it = σ(Wxixt +Whiht− 1 +Wcict− 1 + bi) (19) 

Fig. 3. Proposed spatial feature extraction Model (block two).

Fig. 4. Proposed attention mechanism. Fig. 5. Proposed sequence-to-sequence Model.
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ft =σ
(
Wxfxt +Whfht− 1 +Wcfct− 1 + bf

)
(20) 

gt = tanh
(
Wxgxt +Whght− 1 + bf

)
(21) 

ct = ft ⊙ ct 1 + it⨀gt (22) 

ot = σ(Wxoxt +Whoht 1 +Wcoct + bo) (23) 

ht = ot⨀tanh(ct) (24) 

where x is the input at time step t, ht− 1 is the previous time step hidden 
state, ct− 1 is the previous time step cell state, ((Wxi, Wxf, Wxg

)
, (Whi,Whf, 

Whg) and (Wci,Wcf, Wcg) represents the input, hidden state, and cell state 
weight matrices respectively. 

(
bi, bf ,bg

)
represent bias and the different 

activation functions include σ (sigmoid) and tanh (hyperbolic tangent). 
⨀ signifies elementwise multiplication. In Equation (22), ft regulates 
the amount of information to retain from the previous state whereas the 
it focuses on the amount of new information to select. In Equation (23), 
ot calculates what percentage of ct to output after it must have under-
gone tanh function. The step-by-step operation of the proposed 
sequence-to-sequence model is depicted from Equation (19)–(24). 
Through these steps, the seq2seq carefully selects or disregards infor-
mation over long sequences thereby making it suitable for accurate solar 
irradiance forecasting and prediction using sky images.

2.2. Dataset and data preprocessing

The NREL Solar Radiation Research Laboratory Dataset was used in 
this paper for analysis [54,55]. NREL stands for the National Renewable 
Energy Laboratory. The dataset which incorporates both ASI-16 and 
numerical measurement is said to be the largest dataset in this domain 
that is made publicly available for research around the globe. The image 
data is of 1536 x 1536 pixels per image. The dataset covers the period 
from October 1, 2017, to December 31, 2022, which is five years and 
three months. The training set, validation set, and testing set are the 
three subsets into which it is divided. Data from the first three years 
(October 1, 2017, to December 31, 2020) are included in the training 
set. The data from January 1, 2021, to December 31, 2021, is then set 
aside for validation, and the testing set is the data from January 1, 2022, 

to December 31, 2022, the remaining year. The numerical data consists 
of atmospheric pressure, DNI, DHI, GHI, relative humidity, temperature, 
and wind speed. The dataset contains information and a basic Python 
code for preprocessing thus, this paper made use of the Python code to 
process the data for uniformity. For the numerical features, the DNI, 
DHI, and GHI were used in the proposed model as labels, while others 
were used in benchmarks. Owing to the proposed model’s ability to train 
in an end-to-end manner, the original image pixels of 1536 x 1536 were 
resized to 224 x 224 pixels. Furthermore, six various lead durations 
ranging from 10 min ahead to 60 min ahead were tested, along with four 
different image sequence lengths: 20, 21, 22, and 23 images. Fig. 6 shows 
how the dataset is measured and formed from the satellites while the 
sample of the original sky image and its corresponding processed image 
is depicted in Fig. 7.

2.3. Evaluation metrics

This paper made use of 5 evaluation metrics namely the Mean Bias 
Error (MBE), Mean Absolute Error (MAE), Root Mean Squared Error 
(RMSE), Coefficient of Determination (R2), and forecasting skill score 
(FSS). The average of the variations between each data point’s true and 
forecasted values is used to compute MBE which is mathematically 
calculated as; 

MBE=
1
N

∑N

i=1
(Pi − Oi) (25) 

where n = number of samples, Oi and Pi are the observed values and 
predicted values of the ith item respectively. Unlike the MBE, by 
dividing the total number of observations by the sum of all errors, the 
MAE determines the exact difference between the actual and anticipated 
values mathematically represented as; 

MAE=
1
N

∑N

i=1
|Pi − Oi| (26) 

where | • | = absolute value. The RMSE corresponds to the square root of 
the average squared error, and its measurement unit aligns with that of 
the dependent variable as represented in Equation (27). 

Fig. 6. Data flow from Satellite to solar radiation measurement.
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RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Pi − Oi)

2

√

(27) 

R2 measures the percentage of variability in the dependent variable 
that can be explained by the independent variables in the model 
mathematically represented as; 

R2 =1 −
sum squared regression (SSR)
the total sum of squares (SST)

=1 −

∑
(Pi − Oi)

2

∑
(Pi − Oi)

2 (28) 

Note: R2 = 0 means that the model does not explain any of the 
variability in the dependent variable whereas an R2 = 1 indicates that 
the model perfectly explains all of the variability in the dependent 
variable. 

FSS=
(

1 −
RMSEmodel

RMSEreference

)

(29) 

Meteorology and atmospheric science employ the FSS as a criterion 
to evaluate forecasting model performance. The spatial consistency of 
predicted and observed patterns is measured. Elevated FSS values 
signify precise forecasts, whilst reduced values imply inadequate 
alignment. FSS is useful for evaluating the spatial accuracy of weather, 
climate, and environmental forecasts and may be adjusted to various 
situations. It offers information about how well a model can represent 
spatial patterns, which is essential for producing precise forecasts.

2.4. Implementation hyperparameters

The proposed model was trained based on the specific hypermeters 
in Table 1. MAE is used as the loss function since it is robust to outliers 
and provides a more interpretable error metric in the context of irradi-
ance forecasting. The Adam optimizer is employed due to its adaptive 
learning rate capabilities, leading to faster convergence. A validation set 

is used to monitor the model’s performance during training and prevent 
overfitting. Early stopping is applied based on validation loss.

3. Result and analysis

The section talks about the experimental results and analysis carried 
out in this manuscript including the results and analysis, statistical and 
sensitivity analysis, proposed model component analysis, applicability 
domain using the Williams plot, comparison with state-of-the-art 
models, and finally concludes with the result discussion, identified 
limitations, and future works.

3.1. Proposed model forecast result

Table 2 and Fig. 8 show the performance of the proposed model for 
solar irradiance forecasting and prediction using sky images. Lower 
values of MBE, MAE, and RMSE indicate better accuracy, while higher 
R2 values mean a better fit of the model to the data. The results in 
Table 2 show that as the sequence length increases, the performance of 
the proposed model tends to degrade slightly in terms of MAE, RMSE, 
and R2 suggesting that longer sequences might introduce more 

Fig. 7. Sample of the sky Image (unprocessed vs. Pre-processed).

Table 1 
Proposed model training hyperparameters.

Training Parameters Attention Mechanism 
Parameters

Input Image Size 224, 224, 3 * no of images Activation ReLU
No of Image 1, 2, 4, 6, 8 Kernel 

regularizer
L2 =
0.05

Train Batch Size 16 Activation Linear
Validation Batch Size 16 Kernel 

regularizer
L2 =
0.05

Test Batch Size 1 Optimizer Adam
Data Generator Batch 

Size
2 Learning Rate 1e-4

Number of minutes 10, 20, 30, 40, 50,60 Beta 1, Beta 2 0.7, 0.9
Early Stopping Monitor = val_loss, 

patience = 10
decay 0.001

Epoch 185, 200 Loss, Metrics MAE

Table 2 
Forecast results.

Analysis MBE ↓ MAE ↓ RMSE ↓ R2 ↑

10 Minutes Sequence 1 5.18142 35.108 63.127 0.943
10 Minutes Sequence 2 1.36329 26.979 49.375 0.962
10 Minutes Sequence 4 1.99512 46.206 67.044 0.875
10 Minutes Sequence 8 0.74282 49.667 68.797 0.854

20 Minutes Sequence 1 7.74272 55.411 87.457 0.835
20 Minutes Sequence 2 8.85133 51.828 80.334 0.864
20 Minutes Sequence 4 7.52518 52.464 74.707 0.877
20 Minutes Sequence 8 2.07154 56.069 76.725 0.818

30 Minutes Sequence 1 3.23372 61.721 93.460 0.821
30-min Sequence 2 1.83530 59.773 86.409 0.816
30 Minutes Sequence 4 7.12370 78.274 105.742 0.673
30 Minutes Sequence 8 2.13401 60.190 81.435 0.765

40 Minutes Sequence 1 9.95460 84.804 121.292 0.683
40 Minutes Sequence 2 2.81683 61.711 91.032 0.825
40 Minutes Sequence 4 0.92924 65.568 90.477 0.749
40 Minutes Sequence 8 5.72550 69.912 93.417 0.654

50 Minutes Sequence 1 3.59415 69.812 103.650 0.785
50 Minutes Sequence 2 4.85653 67.545 99.326 0.777
50 Minutes Sequence 4 3.78572 78.665 106.640 0.667
50 Minutes Sequence 8 1.91867 58.725 87.432 0.812

60 Minutes Sequence 1 5.43587 75.217 109.321 0.745
60 Minutes Sequence 2 9.53313 73.485 105.598 0.760
60 Minutes Sequence 4 1.98154 80.758 107.921 0.616
60 Minutes Sequence 8 8.76475 80.372 105.891 0.653

50 Minutes Sequence 8 was trained using 350 epochs without early stopping

C.C. Ukwuoma et al.                                                                                                                                                                                                                           Renewable Energy 237 (2024) 121692 

8 



complexity or noise, making predictions slightly less accurate. For 
instance, comparing Sequence 1 with Sequence 8, there is often a 
noticeable increase in MAE, RMSE, and a decrease in R2 when the 
number of sequences increases indicating that while additional se-
quences might provide more information for the model, it could also 
introduce more variability or noise, leading to slightly less accurate 
predictions. Among the configurations tested, certain setups consistently 
perform better than others. For example, Timeseries 10 Minutes 
Sequence 2 and Timeseries 20 Minutes Sequence 4 tend to have lower 
MAE, RMSE, and higher R2 compared to other configurations within 
their respective sequence lengths. These configurations are considered 
the most optimal setups for the proposed model in terms of accuracy and 
predictive power.

On the other hand, some configurations exhibit higher errors and 
lower R2 values, indicating areas where the proposed model might 
struggle to accurately predict solar irradiance. Understanding the factors 
contributing to these discrepancies projects the future work of this study 
via model improvement, such as refining the architecture, fine-tuning 
hyperparameters, or incorporating additional features. Notwith-
standing, the recorded results demonstrate the effectiveness of the 
proposed model in solar irradiance forecasting using sky images. To 
represent the forecast results both from the image and numerical 
feature, the dataset was reprocessed by combining the length and time of 
the sequence into rainy and sunny days. The times were adjusted as seen 
in Fig. 9. Following related works approaches, the GHI were selected and 
the graph shows that the proposed model is capable of correctly pre-
dicting the ground truth images.

3.2. Component analysis of the proposed model

The proposed model component analysis is shown in Table 3. In each 
minute, the best configuration performance is used for this analysis. For 
example, Timeseries 10 Minutes Sequence 2, Timeseries 20 Minutes 
Sequence 4, Timeseries 30 Minutes Sequence 2, Timeseries 40 Minutes 
Sequence 2, Timeseries 50 Minutes Sequence 2, and Timeseries 60 Mi-
nutes Sequence 2 have lower MAE, RMSE, and higher R2 compared to 
other configurations within their respective sequence lengths. These 
configurations are considered the most optimal setups for the proposed 
model in terms of accuracy and predictive power.

Table 3, Figs. 10 and 11 explain the impact of each component of the 

proposed model (baseline, attention mechanism, sequence to sequence 
model) on the performance metrics (MAE, RMSE, R2) individually and in 
combination within the proposed model. Across all time intervals, the 
baseline model demonstrates a moderate level of performance, serving 
as a reference point for evaluating the effectiveness of enhancements. It 
provides a baseline level of accuracy in solar irradiance forecasting, but 
its performance can be further improved with additional features. When 
adding the attention mechanism to the baseline model, we observe 
improvements in MAE, RMSE, and R2, indicating that attention helps the 
model to focus on relevant features in the input data, enhancing pre-
diction accuracy. The improvements are notable across various time 
intervals, demonstrating the effectiveness of attention in capturing 
important spatial information from sky images.

Incorporating sequence information into the baseline model leads to 
further improvements in performance metrics, particularly in MAE and 
RMSE suggesting that accounting for temporal dependencies in the data 
enhances the model’s ability to capture patterns and make accurate 
forecasts over time. The proposed model, which integrates attention 
mechanisms and a sequence-to-sequence model demonstrates the 
highest level of performance across all metrics and time intervals. 
Combining attention and sequence information synergistically improves 
the model’s predictive capabilities, resulting in the most accurate fore-
casts of solar irradiance. The proposed model achieves the lowest MAE 
and RMSE values and the highest R2 values, indicating superior accuracy 
and model fit compared to individual components and the baseline 
model. The component analysis highlights the complementary nature of 
attention mechanisms and the sequence-to-sequence model in 
enhancing the baseline model’s performance for solar irradiance fore-
casting. While each component contributes to improvements in predic-
tion accuracy independently, their integration within the proposed 
model results in the most significant enhancements, underscoring the 
importance of considering both spatial and temporal aspects of the data 
for accurate forecasting.

3.3. Statistical analysis of the proposed model

The statistical analysis of the proposed model based on time (10, 20, 
30, 40, 50 and 60 min respectively) is shown in Table 4. Examining the 
MBE values, we can observe that the model’s bias fluctuates across the 
time intervals, with the lowest bias occurring at the 10-min interval and 
the highest at the 20-min interval. This suggests that the model’s ability 
to accurately predict the target variable may be influenced by the time 
frame considered. Similarly, the MAE and RMSE values generally in-
crease as the time interval grows longer, indicating that the model’s 
overall error and deviation from the observed values become more 
pronounced with longer forecasting horizons. The R2 values, which 
represent the model’s coefficient of determination, showcase a declining 
trend as the time interval increases. This suggests that the model’s 
ability to explain the variance in the target variable diminishes over 
longer periods, potentially due to the increased complexity and uncer-
tainty inherent in longer-term forecasts. Lastly, the FSS values, which 
measure the model’s spatial forecasting ability, exhibit relatively stable 
performance across the different time intervals, with only minor fluc-
tuations observed. This indicates that the model maintains a consistent 
level of skill in capturing the spatial patterns and distributions of the 
target variable, regardless of the time frame considered. The 10-min 
interval is considered to be the best performing across most of the 
evaluation metrics with an MBE value is 2.321 W/m2, MAE value of 
39.490 W/m2, RMSE value of 62.086 W/m2, R2 value is 0.909 W/m2 and 
FSS value of 23.589 W/m2.

The statistical analysis across different sequence lengths (1, 2, 4, and 
8) for solar irradiance forecasting and prediction is presented in Table 5. 
Looking at the MBE results, the model shows a decreasing bias as the 
sequence length increases. The MBE values range from 5.857 W/m2 for 
sequence length 1–3.543 W/m2 for sequence length 8, indicating that 
the model’s tendency to over- or under-estimate the solar irradiance 

Fig. 8. 3D Forecast Result visualization.
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decreases with longer input sequences. The 95 % confidence intervals 
also become narrower, suggesting that the model’s bias becomes more 
consistent as the sequence length increases. The MAE values range from 
63.679 W/m2 for sequence length 1–67.194 W/m2 for sequence length 
8, indicating that the model maintains a relatively consistent level of 
absolute error across different sequence lengths. The RMSE values 
follow a similar trend, with the lowest value of 85.346 W/m2 for 
sequence length 2 and the highest value of 96.385 W/m2 for sequence 
lengths 1 and 4. The 95 % confidence intervals for both MAE and RMSE 
suggest that the model’s performance is statistically significant. The R2 

values range from 0.802 for sequence length 1 to 0.653 for sequence 

length 8, indicating that the model explains a larger proportion of the 
variance in the solar irradiance data for shorter sequence lengths. The 
FSS values range from 16.348 for sequence length 1 to 27.0 for sequence 
length 8, suggesting that the model’s spatial forecasting skill improves as 
the sequence length increases. These results demonstrate that the pro-
posed model is capable of accurately forecasting and predicting solar 
irradiance, with improved performance in terms of bias, absolute error, 
and spatial forecasting skill as the input sequence length is increased. 
The trade-off is a slight decrease in the model’s coefficient of determi-
nation, indicating that longer sequences may capture more complex 
relationships in the data, but the model’s overall predictive power 

Fig. 9. Forecasting Results Rainy Days vs Sunny Days.
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remains strong. Overall, the sequence length 2 appears to be the best 
performing overall, with an MBE of 4.876 W/m2, MAE of 56.887 W/m2, 
RMSE of 85.346 W/m2, R2 of 0.834 and FSS of 24.881 W/m2. The 
model’s spatial forecasting ability is also strong at this sequence length.

3.4. Sensitivity analysis of the proposed model

Fig. 11 shows the sensitivity analysis of the proposed model to un-
derstand the proposed model behaviour in short and long-term fore-
casting. Fig. 12A shows the relationship between the MBE and the R2 for 
the different sequence lengths and lead times. As the sequence length 
increases, the MBE and R2 values generally move towards higher MBE 
and lower R2, indicating a tradeoff between bias and predictive per-
formance. The shorter lead times (10–30 min) tend to exhibit lower MBE 
and higher R2, suggesting better model performance for shorter-term 
forecasts. The longer lead times (40–60 min) show a wider spread in 
MBE and R2 values, indicating more variability in model performance 
for longer-term forecasts.

Fig. 12B. Focuses on the relationship between the MAE and the lead 
time for the different sequence lengths. As the lead time increases, the 
MAE generally increases for all sequence lengths, indicating that the 
model’s accuracy degrades over longer forecast horizons. Shorter 
sequence lengths (Seq = 1, 2) tend to have lower MAE values compared 
to longer sequence lengths (Seq = 4, 8), especially for the shorter lead 
times (10–30 min). The spread in MAE values increases with longer lead 

Table 3 
Proposed model component analysis.

Analysis MBE ↓ MAE ↓ RMSE ↓ R2 ↑

Baseline 10 Minutes 
Sequence 2

1.9515 86.758 107.921 0.616
Baseline +
Attention

1.7587 61.952 87.086 0.873

Baseline +
Sequence

1.7353 59.773 86.409 0.816

Proposed (baseline 
+ Attention +
Sequence

1.3633 26.979 49.375 0.962

Baseline 20 Minutes 
Sequence 4

8.7648 80.372 105.891 0.453
Baseline +
Attention

7.7924 57.622 88.371 0.869

Baseline +
Sequence

7.7427 55.411 87.457 0.835

Proposed (baseline 
+ Attention +
Sequence

7.5252 52.464 74.707 0.877

Baseline 30-min 
Sequence 2

2.0715 76.069 107.921 0.518
Baseline +
Attention

1.9815 65.758 97.725 0.616

Baseline +
Sequence

1.9921 66.206 96.044 0.775

Proposed (baseline 
+ Attention +
Sequence

1.8353 59.773 86.409 0.816

Baseline 40 Minutes 
Sequence 4

1.9951 96.206 99.044 0.675
Baseline +
Attention

1.8412 71.123 92.409 0.723

Baseline +
Sequence

1.8353 70.773 93.112 0.716

Proposed (baseline 
+ Attention +
Sequence

0.9292 65.568 90.477 0.749

Baseline 50 Minutes 
Sequence 8

2.1340 97.190 131.435 0.765
Baseline +
Attention

1.8552 91.773 118.870 0.816

Baseline +
Sequence

1.8454 90.773 119.409 0.816

Proposed (baseline 
+ Attention +
Sequence

1.91867 58.725 87.432 0.812

Baseline 60 Minutes 
Sequence 4

2.8168 101.711 131.032 0.325
Baseline +
Attention

2.3924 97.622 120.371 0.469

Baseline +
Sequence

2.3427 95.411 121.457 0.435

Proposed (baseline 
+ Attention +
Sequence

1.9815 80.758 107.921 0.616

Fig. 10. Component Analysis MAE vs RMSE.

Fig. 11. Component analysis.

C.C. Ukwuoma et al.                                                                                                                                                                                                                           Renewable Energy 237 (2024) 121692 

11 



times, suggesting that the model’s performance becomes more variable 
for longer-term forecasts. Overall, the sensitivity analysis reveals that 
the proposed model’s performance is influenced by both the sequence 
length and the lead time. Shorter sequence lengths and shorter lead 
times generally result in better bias, predictive accuracy, and consis-
tency in the model’s performance. However, longer sequence lengths 
and lead times introduce more variability and tradeoffs between 
different performance metrics, which is important to consider when 
selecting the appropriate model configuration for a given application or 
forecasting scenario.

3.5. Applicability domain of the proposed model

The underlying data characteristics of the deployed dataset are 
visualised using the Williams plot as shown in Fig. 13. This is to identify 
potential sources of bias or instability in the model and make informed 
decisions on data pre-processing and feature engineering to optimize the 
performance and reliability of our proposed model for solar irradiance 
forecasting. The provided Williams plots offer a comprehensive visual-
ization and analysis of the relationship between leverage and stan-
dardized residuals for different solar irradiance components: DNI, DHI, 

Table 4 
Statistical analysis based on time in minutes.

Metric Minutes Mean Standard Deviation Min Max 95 % Confidence Interval

MBE 10 2.321 1.975 0.742 5.181 [-0.821, 5.463] W/m2

20 6.548 3.040 2.072 8.851 [1.710, 11.385] W/m2

30 3.582 2.437 1.835 7.1237 [-0.296, 7.459] W/m2

40 4.857 3.930 0.929 9.955 [-1.396, 11.110] W/m2

50 3.514 1.259 1.819 4.857 [1.510, 5.517] W/m2

60 6.428 3.457 1.981 9.533 [0.928, 11.930] W/m2

MAE 10 39.490 10.399 26.979 49.667 [22.943, 56.037] W/m2

20 53.943 2.108 51.828 56.069 [50.5881, 57.298] W/m2

30 64.989 8.896 59.773 78.274 [50.834, 79.144] W/m2

40 70.499 10.108 61.711 84.804 [54.415, 86.582] W/m2

50 75.743 8.880 67.545 86.952 [61.613, 89.875] W/m2

60 77.458 3.660 73.485 80.758 [71.634, 83.282] W/m2

RMSE 10 62.086 8.799 49.375 68.797 [48.084, 76.087] W/m2

20 79.806 5.607 74.707 87.457 [70.884, 88.727] W/m2

30 91.762 10.546 81.435 105.742 [74.981, 108.542] W/m2

40 99.055 14.880 90.477 121.292 [75.377, 122.731] W/m2

50 105.426 5.360 99.326 112.086 [96.896, 113.955] W/m2

60 107.183 1.760 105.598 109.321 [17.195, 28.485] W/m2

R2 10 0.909 0.052 0.854 0.962 [0.826, 0.991] W/m2

20 0.848 0.027 0.818 0.877 [0.805, 0.891] W/m2

30 0.769 0.069 0.673 0.821 [0.659, 0.8780] W/m2

40 0.728 0.076 0.654 0.825 [0.607, 0.848] W/m2

50 0.650 0.193 0.373 0.785 [0.644, 0.957] W/m2

60 0.6435 0.143 0.453 0.760 [0.417, 0.870] W/m2

FSS 10 23.589 7.824 16.790 34.850 [11.141, 36.038] W/m2

20 23.423 7.292 15.250 31.510 [11.820, 35.025] W/m2

30 20.855 9.752 9.170 32.580 [5.338, 36.372] W/m2

40 21.005 13.075 1.480 29.190 [0.200, 41.809] W/m2

50 21.590 1.099 20.630 22.700 [19.840, 23.340] W/m2

60 22.840 3.547 18.600 27.270 [17.195, 28.485] W/m2

Table 5 
Statistical analysis based on sequence length.

Metric Sequence Mean Standard Deviation Min Max 95 % Confidence Interval

MBE 1 5.857 2.568 3.233 9.955 [3.162–8.552] W/m2

2 4.876 3.556 1.363 9.533 [1.142, 8.611] W/m2

4 3.890 2.817 0.929 7.525 [0.933, 6.846] W/m2

8 3.543 3.066 0.743 8.765 [0.326, 6.760] W/m2

MAE 1 63.679 17.352 35.108 84.804 [45.469, 81.889] W/m2

2 56.887 16.375 26.979 73.485 [39.702, 74.072] W/m2

4 66.989 14.820 46.206 80.758 [51.436, 82.542] W/m2

8 67.194 14.501 49.667 86.952 [51.976, 82.412] W/m2

RMSE 1 96.385 20.173 63.127 121.292 [75.214, 117.555] W/m2

2 85.346 19.789 49.375 105.598 [64.578, 106.113] W/m2

4 96.385 20.173 63.127 121.292 [75.214, 117.555] W/m2

8 89.726 17.033 68.797 112.086 [71.850, 107.601] W/m2

R2 1 0.802 0.088 0.683 0.943 [0.709, 0.895] W/m2

2 0.834 0.073 0.760 0.962 [0.758, 0.910] W/m2

4 0.743 0.112 0.616 0.877 [0.626, 0.860] W/m2

8 0.653 0.199 0.373 0.854 [0.444, 0.862] W/m2

FSS 1 16.348 7.736 1.480 22.37 [8.230, 24.467] W/m2

2 24.881 5.305 19.770 34.85 [19.314, 30.449] W/m2

4 20.638 6.869 9.170 27.16 [13.429, 27.847] W/m2

8 27.0 5.198 20.66 32.58 [21.545, 32.455] W/m2
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and GHI.
Examining the Williams plot for DNI, we can observe a distinct 

separation between the valid data points and the suspected data points. 
The valid data points are clustered within a well-defined region, while 
the suspected data points exhibit a wider spread and are predominantly 
located outside the upper leverage threshold. This pattern suggests that 
the suspected data points may be subject to higher leverage and 
potentially greater influence on the model’s performance, warranting 
further investigation or potential exclusion. The Williams plot for DHI 
presents a similar scenario, with the valid data points occupying a more 
confined space within the leverage thresholds, while the suspected data 
points exhibit a broader distribution and a significant number falling 
outside the upper leverage limit. This indicates that the suspected data 
points for DHI may also have a higher degree of leverage and influence 
on the model’s behaviour. The Williams plot for GHI showcases a more 
diverse distribution of data points, with both valid and suspected data 
points spanning a wider range of leverage values. While the valid data 
points are predominantly concentrated within the leverage thresholds, a 
considerable number of suspected data points are found outside the 
upper leverage limit. This suggests that the GHI data may have a higher 
degree of variability and potential outliers, which could impact the 
model’s performance and reliability.

3.6. Comparison with state-of-the-art models on the same dataset

This study compared the performance of the proposed model using 
different ML models including two ANNs with varied back-propagation 
(BP), three gradient boosting machines (GBMs) with different loss 
functions, and a random forest (RF) model. This paper only recorded the 
best result from the several evaluated ANNs, GBMs, and RF models. The 
same input features were used for this comparison including DNI, DHI, 
GHI, clear sky DNI, clear sky DHI, clear sky GHI, infrared radiation, dry 
bulb temperature, wind chill temperature, relative humidity, wind 
speed, peak wind speed, and pressure from the preceding 4 h. For the 
comparisons, three evaluation metrics were used including the MBE, 
RMSE, and Skill Scores as highlighted in the subsequent tables.

The MBE is a significant metric for assessing the performance of solar 
irradiance forecasting models as seen in Table 6 and Fig. 14. Comparing 
the MBE results of the proposed model with state-of-the-art models re-
veals noteworthy insights. Across various sequence lengths and time 
intervals, the proposed model consistently outperforms most of the 
compared models in terms of MBE. For instance, at 10 min sequence 
length 1, the proposed model achieves an MBE of 5.18, which is notably 
lower than most state-of-the-art models such as ANN1 (23.64), ANN2 
(− 5.39), GBM1 (− 0.38), GBM2 (− 0.65), GBM3 (− 2.02), RF (− 1.32), 
and SCNN (19.91). This trend persists across different sequence lengths 
and time intervals, indicating the superiority of the proposed model in 
accurately forecasting solar irradiance compared to existing models. 
Furthermore, the proposed model consistently demonstrates competi-
tive performance across various time intervals, showcasing its robust-
ness and effectiveness in handling different forecasting horizons. 
Overall, these results highlight the effectiveness and superiority of the 
proposed model in solar irradiance forecasting tasks compared to state- 
of-the-art models.

Table 7 and Fig. 15 present the RMSE result of the proposed models 
against the state-of-the-art models. Across the different sequence lengths 
and models, there are noticeable variations in performance. For 
instance, in the first row (L = 10), the "Proposed" algorithm consistently 
performs lower compared to other algorithms. Conversely, in some 
cases, like at L = 60, it outperforms certain other algorithms suggesting 
that the optimal hyperparameter setting of the proposed model was not 
met. Additionally, it is noticed that as the sequence length increases, the 
performance of some algorithms either remains stable or slightly de-
teriorates, while others exhibit more significant fluctuations. This could 
indicate varying degrees of robustness of the algorithms to longer 
sequences.

Table 8 and Fig. 16 provide the forecast skill scores comparison be-
tween the state-of-the-art models and the proposed model. The forecast 
skill score indicates the performance of each algorithm in making pre-
dictions. As the sequence length increases, there are fluctuations in the 
performance of different algorithms. For instance, for ANN1, ANN2, 
GBM1, and GBM2, there is a slight improvement in forecast skill scores 
as the sequence length increases, especially up to a certain point. 
Notably, there are instances where the forecast skill scores decrease 
unpredictably with increasing sequence length, indicating that longer 
sequences might not necessarily lead to better predictions for certain 
algorithms. The RF, SCNN, and 3DCNN models achieve relatively high 
forecast skill scores compared to other algorithms in several scenarios 
while GM2 and GM3, exhibit lower forecast skill scores across multiple 
sequence lengths. The interaction between sequence length and algo-
rithm performance is complex and depends on the specific algorithm. 
Some algorithms may be more sui for handling longer sequences, while 
others may perform better with shorter sequences. The "Proposed" 
model forecast skill scores were relatively higher compared to the pro-
posed models. The analysis of the forecast skill scores across different 
sequence lengths provides valuable insights into the performance of 
various algorithms Accurate Solar Irradiance Forecasting and Prediction 
Using Sky Images.

Fig. 12. Sensitivity analysis.
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3.7. Limitations and future works

Despite the encouraging results yielded by the proposed model, the 
result analysis reveals areas where the model could need further 
exploration which include. 

❖ Robustness and generalizability are impacted by changes in input 
data, such as differences in weather conditions or image quality.

❖ The model relies solely on sky image sequences for prediction, 
without incorporating any other measurements or data sources.

❖ The increased complexity of the model leads to higher computing 
costs and longer training times, which may be a tradeoff for 
improved feature capture and prediction accuracy.

To address the proposed model’s limitations, future works will 
enhance robustness by using data augmentation and diverse datasets. 
Incorporate additional data sources for improved accuracy, optimize 
complexity through model simplification, and establish continuous 
evaluation to refine performance over time.

Fig. 13. Applicability domain of the proposed Model based on willam plot.

Table 6 
Forecast MBEs [proposed model vs. State-of-the-art models].

L[min] Sequence Length ANN1 ANN2 GBM1 GBM2 GBM3 RF SCNN 3DCNN Proposed

10 1 23.64 − 5.39 − 0.38 − 0.65 − 2.02 − 1.32 − 1.37 19.91 5.18
2 6.74 − 6.24 − 0.79 − 1.13 − 2.48 − 0.03 1.29 6.08 1.36
4 1.13 − 12.04 − 1.55 − 1.91 − 3.39 0.07 10.35 2.31 1.99
8 13.12 56.54 − 3.17 − 3.49 − 4.69 − 2.02 9.15 1.94 0.74

20 1 − 7.41 9.86 − 0.49 − 0.41 0.15 − 1.10 − 13.18 10.01 7.74
2 40.12 − 28.42 − 1.43 − 1.13 − 0.48 − 0.44 9.22 − 1.32 8.85
4 5.00 − 19.33 − 3.03 − 2.56 − 2.30 − 0.28 − 5.86 1.09 7.53
8 − 6.63 − 20.42 − 6.22 − 5.79 − 4.85 − 3.17 10.35 − 4.90 2.08

30 1 − 2.89 − 77.21 − 0.96 0.42 2.79 − 2.24 1.14 − 19.49 3.23
2 − 6.21 − 38.40 − 2.13 − 0.48 2.13 − 0.76 4.26 − 2.66 1.83
4 21.58 − 10.58 − 4.48 − 2.62 − 0.76 − 1.59 − 49.17 0.29 7.12
8 − 11.88 − 23.78 − 9.34 − 7.26 − 5.54 − 5.78 6.66 6.30 2.13

40 1 − 17.61 28.96 − 1.23 1.08 4.79 − 0.17 3.63 − 1.61 9.95
2 − 29.19 − 36.05 − 2.70 − 0.23 3.82 − 0.76 − 2.66 10.60 2.82
4 − 36.37 − 30.31 − 5.68 − 3.11 0.62 − 2.80 − 2.92 11.70 0.93
8 2.59 − 56.42 − 12.29 − 9.06 − 5.91 − 8.21 − 4.29 8.85 5.73

50 1 16.25 − 28.99 − 1.70 0.84 5.67 − 1.02 − 11.75 − 14.07 3.59
2 − 8.79 − 44.02 − 3.49 − 0.66 4.56 − 2.05 8.30 2.79 4.86
4 − 1.76 − 29.78 − 7.05 − 3.85 0.93 − 6.01 − 6.45 − 1.08 3.79
8 − 20.52 − 40.17 − 15.35 − 11.51 − 6.71 − 12.26 19.58 7.41 1.82

60 1 36.68 − 15.45 − 2.30 0.65 6.01 − 1.41 − 6.18 − 6.86 5.44
2 − 1.62 − 66.35 − 4.27 − 0.85 4.80 − 2.72 − 8.14 4.38 9.53
4 80.22 − 89.03 − 8.65 − 4.64 1.50 − 6.99 2.84 4.44 1.98
8 − 29.40 − 27.53 − 18.69 − 13.94 − 7.10 − 15.20 − 1.23 0.30 8.76
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4. Conclusions

This study presents an Attention Sequence -To-Sequence Convolu-
tional Neural Network to predict the future values of GHI, DNI, and DHI 
for utility operations using sky images. A convolutional neural network 
is for spatial feature extraction, an attention mechanism to focus on the 
relevant regions, and a sequence-to-sequence model to capture temporal 
dependencies to accurately define the temporal structure of the pre-
dictions. The model’s accuracy and predictive power were optimized by 
considering both spatial (through attention mechanisms) and temporal 
(through sequence information) aspects of the data. The main findings of 
this study are summarized thus. 

❖ Based on an extensive evaluation using five years of publicly avail-
able data, the proposed model, which integrates a Convolutional 
Neural Network (CNN), attention mechanism, and sequence-to- 
sequence architecture, outperformed the benchmark methods 
across various evaluation metrics.

❖ Furthermore, the study findings indicate that the proposed model 
exhibits a high degree of robustness to factors such as the length of 
the input image sequence and the forecast horizon. In contrast, the 
benchmark models exhibited much greater instability, with a sig-
nificant decrease in forecasting accuracy as the lead time increased.

❖ The integration of the attention mechanism and the sequence-to- 
sequence model into the CNN framework has significantly 
enhanced the model’s capability to identify and assimilate the rele-
vant features from the input sky images, leading to improved accu-
racy in solar irradiance forecasting.

❖ The sequence length 2 appears to be the best performing overall, 
with an MBE of 4.876 W/m2, MAE of 56.887 W/m2, RMSE of 85.346 
W/m2, R2 of 0.834 and FSS of 24.881 W/m2. The model’s spatial 
forecasting ability is also strong at this sequence length.

❖ The 10-min interval is considered to be the best performing across 
most of the evaluation metrics with an MBE value is 2.321 W/m2, 
MAE value of 39.490 W/m2, RMSE value of 62.086 W/m2, R2 value is 
0.909 W/m2 and FSS value of 23.589 W/m2.

❖ As the sequence length increases, the MBE and R2 values generally 
move towards higher MBE and lower R2, indicating a tradeoff be-
tween bias and predictive performance. The shorter lead times 
(10–30 min) tend to exhibit lower MBE and higher R2, suggesting 
better model performance for shorter-term forecasts. The longer lead 
times (40–60 min) show a wider spread in MBE and R2 values, 
indicating more variability in model performance for longer-term 
forecasts.

❖ The sensitivity analysis reveals that the proposed model’s perfor-
mance is influenced by both the sequence length and the lead time. 

Fig. 14. Mbe result comparison with state-of-the-art models.

Table 7 
Forecast RMSE [proposed model vs. State-of-the-art models].

L[min] Sequence Length ANN1 ANN2 GBM1 GBM2 GBM3 RF SCNN 3DCNN Proposed

10 1 94.52 88.92 87.23 87.16 88.89 85.36 79.90 81.82 63.13
2 85.28 88.71 87.80 87.67 89.53 83.66 71.30 80.28 49.38
4 84.51 90.97 88.91 88.79 91.04 85.39 73.76 87.38 67.04
8 94.49 147.89 93.07 92.98 95.53 90.26 81.67 92.04 68.80

20 1 111.53 115.71 113.70 113.77 116.50 108.58 103.53 102.87 87.46
2 132.79 122.81 114.09 114.05 117.17 108.98 98.53 101.73 80.33
4 110.47 121.09 115.28 115.13 118.99 109.60 98.27 106.86 74.71
8 121.12 132.17 120.96 120.84 125.45 117.33 107.35 116.69 76.73

30 1 123.42 207.87 127.22 127.16 130.30 121.01 111.07 118.16 93.46
2 119.41 143.39 127.52 127.35 130.74 119.59 109.33 115.73 86.41
4 130.69 126.96 128.90 128.60 132.64 121.63 111.72 121.11 105.74
8 130.12 137.62 135.70 135.43 140.66 130.52 113.69 127.89 81.44

40 1 132.24 144.59 136.64 136.36 140.00 127.34 118.98 127.24 121.29
2 142.73 148.00 136.92 136.56 140.33 127.54 119.35 127.58 91.03
4 157.26 158.46 138.54 138.09 142.12 129.70 121.48 126.67 90.48
8 144.06 182.62 146.56 146.07 151.32 140.21 126.66 137.21 93.42

50 1 138.85 150.71 144.22 143.58 147.36 132.75 130.67 136.38 103.65
2 148.82 166.43 144.63 144.01 147.77 133.32 127.49 129.49 99.33
4 136.49 148.22 146.32 145.65 149.41 135.62 131.29 137.43 106.64
8 148.34 160.51 155.61 154.82 159.82 146.86 136.10 146.43 112.09

60 1 162.98 153.64 150.92 150.01 153.91 136.96 133.12 135.49 109.32
2 145.11 198.57 151.37 150.52 154.45 137.75 135.43 137.05 105.60
4 216.87 228.69 153.17 151.99 156.00 140.29 137.55 142.77 107.92
8 157.38 162.25 164.01 162.69 167.57 152.97 142.95 148.23 105.89

Fig. 15. Rmse result comparison with state-of-the-art models.
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Shorter sequence lengths and shorter lead times generally result in 
better bias, predictive accuracy, and consistency in the model’s 
performance. However, longer sequence lengths and lead times 
introduce more variability and tradeoffs between different perfor-
mance metrics, which is important to consider when selecting the 
appropriate model configuration for a given application or fore-
casting scenario.

❖ Using the Williams plot of DHI, DNI, and GHI, the application 
domain analysis revealed that a credible model is indicated by the 
majority of data points having leverage values below 0.3 and falling 
within ±3 standardised residuals. To guarantee the correctness and 
resilience of the model, additional research is necessary as a result of 
the identification of potentially significant outliers.

❖ The results explain that longer sequences may introduce complexity 
or noise, leading to slightly less accurate predictions. Certain setups, 
such as Timeseries 10 Minutes Sequence 2 and Timeseries 20 Mi-
nutes Sequence 4, demonstrated superior performance within their 
respective sequence lengths. The proposed model’s component 
analysis highlighted the complementary nature of attention mecha-
nisms and sequence to the to-sequence model in enhancing the 
baseline model’s performance.
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Table 8 
Forecast skill scores [%] [proposed model vs. State-of-the-art models].

L[min] Sequence Length ANN1 ANN2 GBM1 GM2 GM3 RF SCNN 3DCNN Proposed

10 1 − 4.20 1.97 3.84 3.91 2.01 5.90 11.92 9.80 21.93
2 6.05 2.27 3.27 3.42 1.37 7.83 21.45 11.56 34.85
4 7.82 0.77 3.02 3.15 0.70 6.86 19.54 4.69 16.79
8 − 0.40 − 57.15 1.11 − 1.51 1.20 4.09 13.21 2.20 20.79

20 1 9.21 5.81 7.45 7.39 5.17 11.62 15.73 16.26 15.25
2 − 7.41 0.66 7.72 7.75 5.23 11.85 20.30 17.71 19.77
4 10.34 1.72 6.44 6.56 3.43 11.05 20.24 13.27 27.16
8 3.22 − 5.61 3.35 − 0.24 3.44 6.25 14.22 6.76 31.51

30 1 14.68 − 43.70 12.06 12.10 9.93 16.35 23.22 18.32 18.46
2 18.03 1.57 12.46 12.58 10.25 17.90 24.94 20.55 23.21
4 11.43 13.95 12.64 12.84 10.11 17.57 24.28 17.92 9.17
8 7.50 2.17 3.53 3.73 0.01 7.22 19.18 9.09 32.58

40 1 21.01 13.64 18.38 18.55 16.38 23.94 28.93 24.00 1.48
2 15.29 12.17 18.74 18.96 16.72 24.31 29.17 24.29 26.27
4 7.94 7.24 18.90 19.17 16.81 24.08 28.89 25.85 27.08
8 4.97 − 20.47 3.32 3.64 0.18 7.51 16.44 9.49 29.19

50 1 28.03 21.89 25.25 25.58 23.62 31.20 32.28 29.32 22.37
2 23.36 14.29 25.52 25.84 23.90 31.34 34.35 33.31 22.70
4 30.66 24.70 25.67 26.01 24.10 31.10 33.30 30.18 20.63
8 8.21 0.68 3.71 4.20 1.11 9.13 15.79 9.39 20.66

60 1 26.53 30.74 31.96 32.37 30.61 38.26 39.99 38.92 18.60
2 34.99 11.03 32.18 32.56 30.80 38.28 39.32 38.60 22.49
4 4.14 − 1.08 32.30 32.82 31.05 37.99 39.20 36.89 23.00
8 14.40 11.75 10.79 11.51 8.86 16.80 22.24 19.37 27.27

Fig. 16. FSS result comparison with state-of-the-art models.
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upon publication of the study on our GitHub page. 
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